Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38606850

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is characterized by a dense fibrotic stroma that contributes to aggressive tumor biology and therapeutic resistance. Current in vitro PDAC models lack sufficient optical and physical access for fibrous network visualization, in situ mechanical stiffness measurement, and metabolomic profiling. Here, we describe an openable multilayer microfluidic PDAC-on-a-chip platform that consists of pancreatic tumor cells (PTCs) and pancreatic stellate cells (PSCs) embedded in a 3D collagen matrix that mimics the stroma. Our system allows fibrous network visualization via reflected light confocal (RLC) microscopy, in situ mechanical stiffness testing using atomic force microscopy (AFM), and compartmentalized hydrogel extraction for PSC metabolomic profiling via mass spectrometry (MS) analysis. In comparing cocultures of gel-embedded PSCs and PTCs with PSC-only monocultures, RLC microscopy identified a significant decrease in pore size and corresponding increase in fiber density. In situ AFM indicated significant increases in stiffness, and hallmark characteristics of PSC activation were observed using fluorescence microscopy. PSCs in coculture also demonstrated localized fiber alignment and densification as well as increased collagen production. Finally, an untargeted MS study putatively identified metabolic contributions consistent with in vivo PDAC studies. Taken together, this platform can potentially advance our understanding of tumor-stromal interactions toward the discovery of novel therapies.

2.
Lab Chip ; 21(21): 4081-4094, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34604885

RESUMO

Biomicrofluidic systems that can recapitulate complex biological processes with precisely controlled 3D geometries are a significant advancement from traditional 2D cultures. To this point, these systems have largely been limited to either laterally adjacent channels in a single plane or vertically stacked single-channel arrangements. As a result, lateral (or transverse) and vertical (or normal) diffusion have been isolated to their respective designs only, thus limiting potential access to nutrients and 3D communication that typifies in vivo microenvironments. Here we report a novel device architecture called "TANDEM", an acronym for "T̲ransverse A̲nd N̲ormal D̲iffusional E̲nvironments for M̲ultidirectional Signaling", which enables multiplanar arrangements of aligned channels where normal and transverse diffusion occur in tandem to facilitate multidirectional communication. We developed a computational transport model in COMSOL and tested diffusion and culture viability in one specific TANDEM configuration, and found that TANDEM systems demonstrated enhanced diffusion in comparison to single-plane counterparts. This resulted in improved viability of hydrogel-embedded cells, which typically suffer from a lack of sufficient nutrient access during long-term culture. Finally, we showed that TANDEM designs can be expanded to more complex alternative configurations depending on the needs of the end-user. Based on these findings, TANDEM designs can utilize multidirectional enhanced diffusion to improve long-term viability and ultimately facilitate more robust and more biomimetic microfluidic systems with increasingly more complex geometric layouts.


Assuntos
Fenômenos Biológicos , Microfluídica , Difusão , Hidrogéis , Transdução de Sinais
3.
Biosens Bioelectron ; 147: 111757, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31654819

RESUMO

Mimicking the physiological or pathophysiological barrier function of endothelial and epithelial cells is an essential consideration in organ-on-a-chip models of numerous tissues including the vascular system, lungs, gut and blood-brain barrier. Recent models have furthermore incorporated 3D extracellular matrix hydrogels to recapitulate the composition and cell-matrix interactions found in the native microenvironment. Assessment of barrier function in these 3D organ-on-a-chip models, however, is typically limited to diffusive permeability measurements that are exclusively fluorescence-based. In this work, an on-chip electrochemical method to measure endothelial permeability in a 3D hydrogel-based vascular model was developed that replaces the ubiquitous fluorescent tracer with an electroactive one. Unlike the traditional fluorescent-based method, this electrochemical method eliminates the need for bulky, costly and complex optical instrumentation that require measurements to be performed outside of the incubator. A 3D extracellular matrix gel-based microfluidic model was first developed that incorporates capillary pressure barrier microstructures. Micromilling of thermoplastics was used to fabricate these microstructures in a rapid, moldless fashion. As a proof-of-concept demonstration, the permeability of endothelial cells cultured on hydrogels was electrochemically measured after being subject to perfusion conditions, and following exposure to known permeability mediators. In summary, the electrochemical permeability assay possesses both the benefits of on-chip integration and robustness of the traditional fluorescence-based assay while also enabling the measurement of barrier function in an organ-on-a-chip incorporating 3D culture conditions.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Células Endoteliais/fisiologia , Permeabilidade , Barreira Hematoencefálica/química , Barreira Hematoencefálica/metabolismo , Células Endoteliais/química , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Humanos , Hidrogéis/química , Imageamento Tridimensional/métodos , Dispositivos Lab-On-A-Chip , Microfluídica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...